

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

The Effect of Collector's Type on Gold and Silver Flotation in a Complex Ore

Neşet Acarkan^a; Gülay Bulut^a; Alim Gü^a; Olgaç Kangal^a; Fırat Karakaş^a; Ozan Kökkılıç^a; Güven Önal^a

^a Istanbul Technical University, Faculty of Mines, Mineral Processing Engineering Department, Maslak-Istanbul

Online publication date: 18 January 2011

To cite this Article Acarkan, Neşet , Bulut, Gülay , Gü^a, Alim , Kangal, Olgaç , Karakaş, Fırat , Kökkılıç, Ozan and Önal, Güven(2011) 'The Effect of Collector's Type on Gold and Silver Flotation in a Complex Ore', *Separation Science and Technology*, 46: 2, 283 – 289

To link to this Article: DOI: 10.1080/01496395.2010.512029

URL: <http://dx.doi.org/10.1080/01496395.2010.512029>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

The Effect of Collector's Type on Gold and Silver Flotation in a Complex Ore

Neşet Acarkan, Gülay Bulut, Alim Gül, Olgaç Kangal, Fırat Karakaş,
Ozan Kökkiliç, and Güven Önal

*Istanbul Technical University, Faculty of Mines, Mineral Processing Engineering Department,
Maslak-Istanbul*

Gold and silver are recovered by gravity concentration, cyanidation, or flotation from ores. The choice of those processes depends on the mineralogical characterization as well as gold and silver contents of the ore. Flotation has been applied on ores containing free gold and silver particles for many years. The flotation efficiency of gold and silver particles depends on the modifiers and collectors. This paper presents the results of the effect of different collector combinations on gold and silver recoveries from lead and zinc ores by flotation. Best results were obtained on the use of Aero 208 + Aerophine 3418 A as collectors at the dosages of 350 + 350 g/t and 1000 g/t Na₂SiO₃ as a depressant at pH 4.5 where particle size was below 38 µm. According to the process, a concentrate assaying 1026.9 g/t Au and 10185 g/t Ag was obtained. On the other hand, a concentrate containing 50.6% Pb was obtained with 39.7% recovery using potassium amyl xanthate (KAX) and aminothiophenol (ATP). This concentrate graded 235 g/t Au and 3740 g/t Ag.

Keywords chelating reagent; flotation; gold; silver

INTRODUCTION

Gold and silver are usually found in native form or in the structures of sulphide and silicate minerals and as tellurides in nature. Today, precious metals such as gold and silver are usually recovered from metallic ores by chemical processes. Gravity concentration and flotation processes could be used prior to chemical processes depending on the ore formation (1–6).

Gold concentration processes usually consist of gravity separation, flotation, cyanidation, or a combination of these methods. The choice of those processes depends on the mineralogical characterization and gold content of the ore. In the case of high gold contents contains 250–300 g/t Au, alternative methods such as smelting for

the treatment of the concentrate, other than cyanide leaching, may be viable (7,8).

Gravitational gold recovery has been developed significantly for the past twenty-five years, owing to the development of new gravitational techniques. Gravity concentrators such as spirals, shaking tables, Knelson, Falcon, Knudsen concentrators, and Multi-Gravity Separator have been effectively used in the concentration of finely liberated ores.

Free metallic gold can be recovered very effectively by flotation (1). The most common gold bearing sulphides are pyrite, arsenopyrite, and pyrrhotite. In the treatment of placer ores or gravity concentrates most gangue minerals are hydrophilic, and thus strong collectors should be used to maximize gold recovery with little concern for co-recovery of sulphides. This type of flotation is rare but has been proposed for low grade ores where gold is too fine to be recovered by selective flotation.

Fundamental concepts of gold and electrum flotation are considered, including the possibility of collectorless flotation of the minerals. This question is not yet resolved properly, but gold in some ores does float without collector (1,9). The hydrophobicity of gold and silver was enhanced by the addition of flotation collectors such as xanthates, dithiophosphates, and dithiophosphinates which are used in sulphide mineral flotation (1,10–14). The effect of copper activation and galvanic interaction on the behavior of free gold and refractory gold during froth flotation were studied by some researchers (15,16). Teague et al. also found that when copper sulphate is added after collector the recovery of free gold increases dramatically so that there is an overall increase in total gold recovery of up to 6% compared with the usual sequence of adding the copper first. On the other hand, studies have been carried out to find alternative flotation processing techniques for very fine gold and silver (17–19).

Ores of oxidized base metals such as Cu, Zn, and Pb may contain gold and silver. Different researchers have

Received 26 February 2010; accepted 27 July 2010.

Address correspondence to Neşet Acarkan, Istanbul Technical University, Faculty of Mines, Mineral Processing Engineering Department, 34469, Maslak-Istanbul, Turkey. E-mail: acarkan@itu.edu.tr

studied flotation of oxidized ores and suggested the following methods (20–27)

- i. sulphidization followed by flotation with a sulphydryl collector, e.g., xanthates and activation by means of a metal ion,
- ii. sulphidization using sodium sulphide followed by flotation with a cationic collector, e.g., amines,
- iii. employing selective collectors such as mercaptants,
- iv. using chelating agents.

The objective of this investigation is to explore the possibility of applying the flotation method to obtain marketable Au-Ag-Pb concentrates from an oxidized ore.

MATERIALS AND METHODS

Chemical Properties of the Ore Sample

The complex lead and zinc ore used in this study was taken from the Bolkardağ, Niğde region of Turkey. Chemical analysis of the representative ore sample is given in Table 1.

Chemical analysis showed that the representative ore sample contains 12.2 g/t Au, 256 g/t Ag, 3.45% Pb, and 3.15% Zn.

Mineralogical Properties of the Ore Sample

According to mineralogical studies, the representative ore sample contains primarily native gold, native silver, electrum, and argentojarosite as gold and silver minerals; cerusite, anglesite, galena, pyromorphite, mimetite, and

plumbojarosite as lead minerals; smithsonite, hydrozincite, hemimorphite, adamite, and sphalerite as zinc minerals; limonite, hematite, goethite, pyrite, magnetite and siderite as iron minerals and quartz, feldspar, albite and muscovite as gangue minerals (28,29). Mineralogical analyses showed that the size of gold particles changed between 1 and 325 microns, and the average size was 12 microns. Electrum was determined to be between 5 and 35 microns. Furthermore, native silver particles having 5–35 microns particle sizes were observed inside galena and cerusite. The sizes of lead bearing minerals changed between 55 and 85 microns. Microscopic images of the minerals in the ore sample are shown in Figs. 1, 2, 3, and 4.

Flotation Tests

Flotation experiments performed with ore samples ground below 38 microns employing a Denver type flotation machine. During all flotation experiments, solids ratio was 20% and aeration rate in flotation cell was 10 L/minute. Combinations of aminothiophenol (ATP-C₆H₇NS) and potassium amyl xanthate (CH₃CH₂CH₂CH₂OCS₂K) as well as Aerophine 3418 A and Aero 208 were used as collectors, Na₂SiO₃ as a depressant, Na₂S as a sulphidizing reagent, and methyl isobutyl carbinol (MIBC) as a frother.

Aminothiophenol (ATP-C₆H₇NS) is a compound of aromatic thiol which is structurally analogous to phenol where hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulphydryl group (-SH). Thiophenol is also

TABLE 1
Chemical analysis of the representative ore sample

Compound	Content
Au, g/t	12.2
Ag, g/t	256
Fe ₂ O ₃ , %	40.47
Pb, %	3.45
Zn, %	3.15
Cu, %	0.11
SiO ₂ , %	29.09
MgO, %	0.81
CaO, %	3.53
Al ₂ O ₃ , %	3.01
Na ₂ O, %	0.09
K ₂ O, %	0.56
TiO ₂ , %	0.14
P ₂ O ₅ , %	0.10
MnO, %	1.24
Loss on Ignition, %	13.90

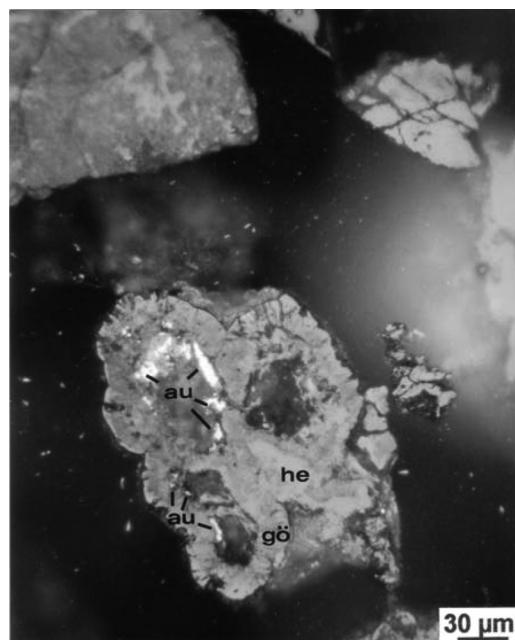


FIG. 1. Native gold particles (au) in hematite (he) and goethite (go).

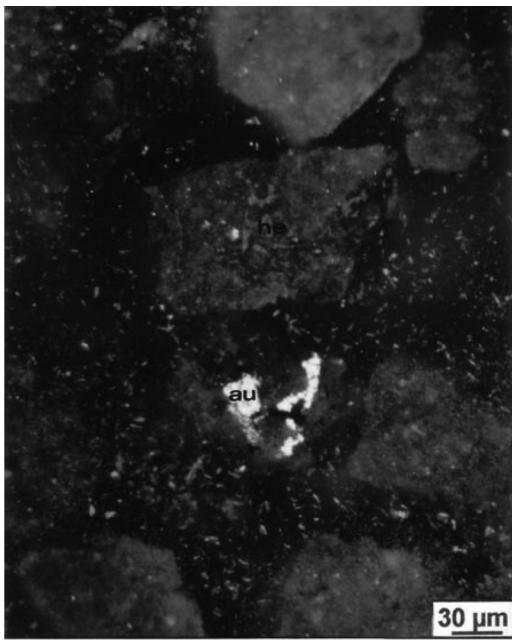
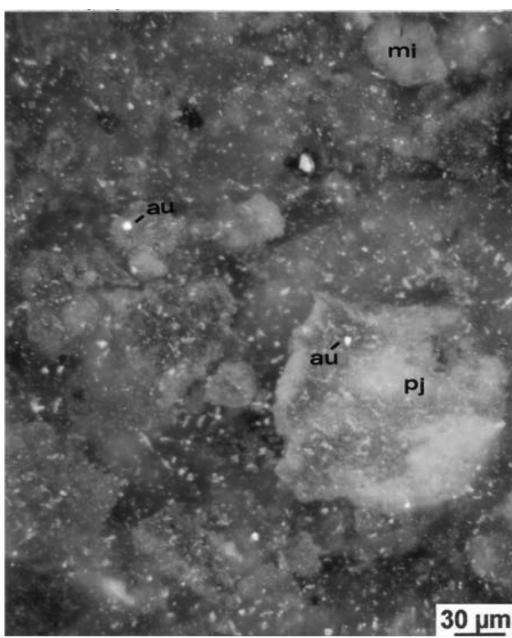



FIG. 2. Native gold particles (au) in hematite (he).

called phenyl mercaptan. Thiophenol is a toxic, flammable, clear liquid with a strong and unpleasant odor; boiling at 168°C. It is insoluble in water but soluble in alcohol and ether. Many chemical reactions of thiophenols are analogous to phenols. The substantial difference between sulfur and oxygen is that sulfur much more readily gets

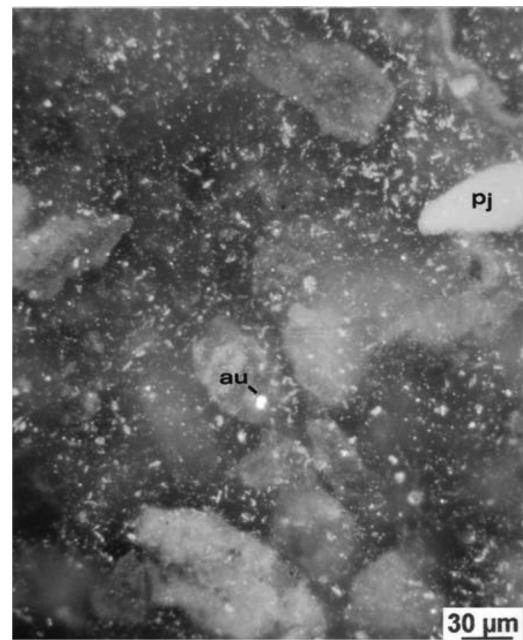
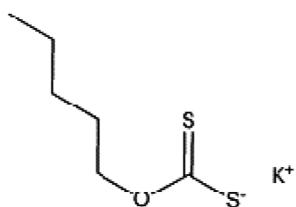


FIG. 4. Native gold (au) particles together with cerusite (se), mimetite (mi) and plumbojarosite (pj) particles.


oxidized to higher oxidation states than oxygen. Thiophenols can form thiophenolate anions by losing sulphydryl H⁺ ions; used as reagents for the simple chemical preparation. The ring closure reaction of *o*-amino thiophenol produces benzothiazole, an important industrial product. Thiophenol itself is used as an antinematodal agent. Thiophenol class compounds have the skeleton of thiophenol.

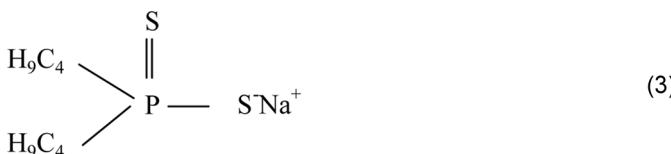
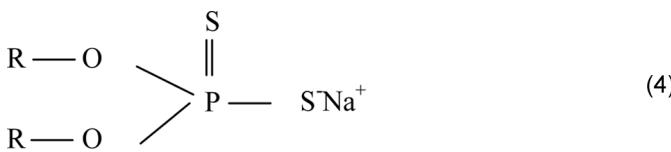

As is well known, xanthates can be obtained by reacting an alcohol with carbon disulphide and an alkali such as sodium hydroxide or potassium hydroxide. The alcohols employed are not unique. They can form ethyl, butyl (isobutyl, normal butyl, secondary butyl), propyl (isopropyl, normal propyl), and amyl (isoamyl, normal amyl, secondary amyl) xanthates, in dry forms, such as powder, granules, pellets, tablets, or flakes. Xanthate is the common name for chemical reagents used in the flotation of base and precious metals, which is the standard method for separating valuable minerals, such as gold, copper, lead, or zinc minerals, from non-valuable minerals, such as limestone or quartz (gangue). The most common xanthates added to flotation circuits are ethyl and

FIG. 3. Native gold (au) particles together with cerusite (se), mimetite (mi) and plumbojarosite (pj) particles.


amyl xanthates (30).

Aerophine 3418 A promoter is a unique, P-based sulfide collector. It was originally developed for the flotation of copper and activated zinc minerals. It has since been found to be an invaluable (and often irreplaceable) collector in the beneficiation of complex, polymetallic, and massive sulfide ores. On these ores it provides very selective separations. It is highly effective for galena and precious metals, especially silver. Its main attributes are strong collecting power but with excellent selectivity against iron sulfide minerals, inactivated sphalerite, and penalty elements. On many ores, the dosage required may be considerably lower than that needed for traditionally-used non-selective collectors such as xanthates.

Aerofloat 208 promoter is used mainly for selective flotation of Cu from Cu/Zn ores where Zn minerals tend to float readily; for flotation of activated Zn sulfides where selectivity against iron sulfides presents a problem. It is very selective against iron sulfides. Besides it is used as an excellent collector for native Au, Ag, and Cu.

RESULTS AND DISCUSSION

Flotation Experiments Performed with ATP-KAX Combination

Representative ore sample was ground under 38 microns particle size prior to multi stage flotation experiments where 600 + 600 g/t ATP + KAX combination were used. While natural pulp pH was 8.5, it increased to 9.85 by the addition of Na₂S. Experimental conditions, experimental flowsheet and combined results are given at Table 2, Fig. 5 and Table 3, respectively.

TABLE 2
Flotation conditions for ATP+KAX combination

Na ₂ SiO ₃	1000 g/t
Na ₂ S	5600 g/t
ATP	600 g/t
KAX	600 g/t
MIBC	40 g/t
Na ₂ SiO ₃ Conditioning Time	10 minutes
Na ₂ S Conditioning Time	21 minutes
ATP+KAX Conditioning Time	40 minutes
Flotation Time	20 minutes
Cleaning Stages Conditioning Times	6 minutes
Cleaning Stages Flotation Times	15 minutes

As it is seen from Table 3, a concentrate assaying 50.6% Pb was obtained with 39.7% recovery. The concentrate was found to contain 235 ppm Au and 3740 ppm Ag. Test results suggested that KAX and ATP were highly effective on the flotation of gold and silver associated with oxidized lead minerals.

Flotation of zinc minerals in the ore could not be achieved using the combination of ATP + KAX in contrast to the reports in the literature (11,23). This is likely because of the very complex mineralogical structure of the ore owing to the oxidized iron and zinc minerals. On the other hand, gold and silver minerals in the ore were successfully floated using ATP and KAX as collectors although it is known that ATP is particularly effective on oxidized lead-zinc minerals. When xanthate was used alone in the flotation, 15% of Au and Ag minerals could be floated;

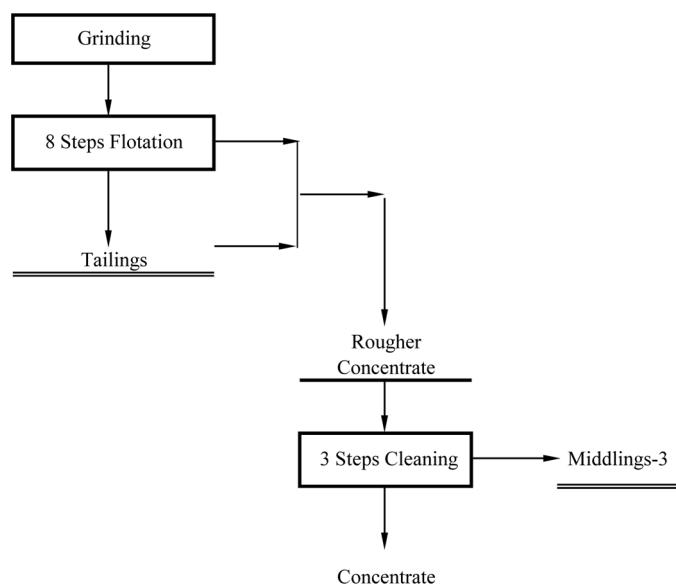


FIG. 5. Experimental flowsheet for ATP+KAX combination.

TABLE 3
Results of experiments performed with ATP+KAX combination

Products	Weight %	Au		Ag		Pb	
		Content, ppm	Recovery, %	Content, ppm	Recovery, %	Content, %	Recovery, %
Concentrate	2.7	235.0	52.5	3740	37.6	50.60	39.7
Tailings	97.3	5.9	47.5	172	62.4	2.13	60.3
Total	100.0	12.1	100.0	268	100.0	3.44	100.0

however, in the case of ATP+KAX combination, 52% of gold and 32% of silver could be floated. These findings suggest that ATP is also effective on Au and Ag minerals.

Where reagents of the ATP type are concerned, these exert chelating action towards Pb and Zn. Chelating occurs through a weak dative bond of the nitrogen and the saline bond of -SH (22,31,32). Since the collecting action of chelating reagents is directed towards the cation present on the mineral surface, irrespective of the mineralogical class, it is expected that these reagents achieve flotation of zinc, lead, minerals either oxides or sulphides in the same way, i.e., it seemed logical that, by the use of a suitable chelating agent, it might well be possible to remove the barrier between base-metal sulphide and oxide minerals, which do not respond equally to the same conventional collectors.

Flotation Experiments Performed with Aerophine 3418A-Aero 208 Combination

The combination of Aerophine 3418A (200 g/t) and Aero 208 (Cytec Ind.) (200 g/t) was used in the flotation experiments. These are dialkyl dithiophosphate type reagents which are especially used for the flotation of native gold and silver.

Ore sample was ground under 38 μm prior to multi-stage flotation experiments. Flotation test conditions, experimental flowsheet and results are given in Table 4, Fig. 6 and Table 5, respectively.

It can be seen from Table 5 that the Aerophine 3418A + Aero 208 combination more effectively floated the gold and silver compared to the oxidized lead minerals as expected. Studies on the interactions of gold and silver with collectors such as xanthates and dithiophosphates are considered as a guide to practical flotation. It has been shown that xanthates adsorb on gold and silver by electrochemical reactions involving xanthate species where oxygen must exist.

Non-conventional collectors i.e., collectors different to xanthates are frequently used in the sulphide flotation practice. An example of non-conventional collectors is sodium-di-isobutyl dithiophosphinate (DTPINa), known under the trademark of Aerophine 3418A of Cytec Industries. DTPINa is mainly recommended to float lead,

copper, and precious metals from minerals containing high levels of pyrite, as is the case of polymetallic ores.

Research works on froth flotation of sulfides in the presence of non-conventional collectors (e.g., thiophosphinates, thionocarbamates, etc.) have demonstrated that the selective activation of the mineral species is substantially affected by the electrochemical conditions (pulp potential) of the flotation slurry (33,34). Despite very little fundamental

TABLE 4
Experimental conditions for Aerophine 3418A+Aero 208 combination

Na ₂ SiO ₃	1000 g/t
Aerophine 3418 A	200 g/t
Aero 208	200 g/t
Na ₂ SiO ₃ Conditioning Time	10 minutes
Aerophine 3418 A+Aero 208 Conditioning Time	20 minutes
Flotation Time	10 minutes
Cleaning Stages Conditioning Times	4 minutes
Cleaning Stages Flotation Times	10 minutes

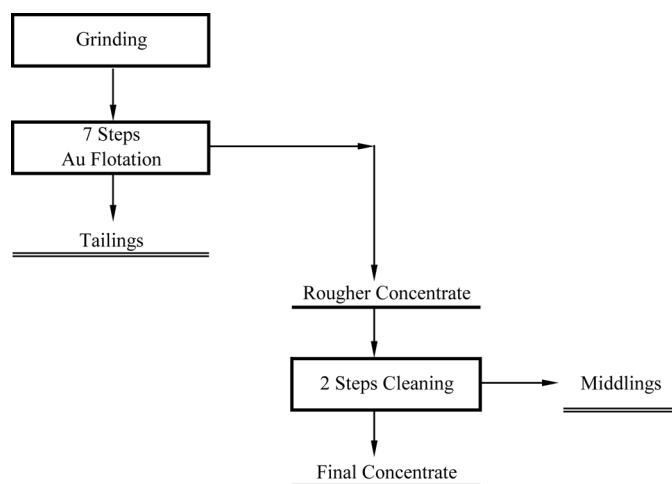


FIG. 6. Experimental flowsheet for Aerophine 3418A-Aero 208 combination.

TABLE 5
Results of experiments performed with Aerophine 3418A+Aero 208 combination

Products	Weight %	Au		Ag		Pb	
		Content, ppm	Recovery, %	Content, ppm	Recovery, %	Content, %	Recovery, %
Concentrate	0.7	920	51.1	10100	31.2	11.38	1.4
Tailing	99.3	6.2	48.9	180	68.8	3.12	67.4
Total	100.0	12.6	100.0	259	100.0	3.21	100.0

data are available on the electrochemical response of sulfides in presence of DTPINa. It is known that the interaction mechanism of different thiol collectors with sulfides is essentially similar. However, examinations of non-conventional collectors such as thionocarbamates and hydroxamate (35,36) have revealed some differences with regard to the xanthates. For example, a chemisorption process (with no electron transfer) that proceeds at lower potentials compared with the potentials at which the electrochemical adsorption of xanthates occurs. According to Basilio and Yoon (35), this behavior is due to the small pK of the corresponding metal-collector compound. Although it is believed that DTPINa interacts with sulfides through mechanisms analogous to those accepted for xanthates, thus far it has not been demonstrated. According to the above, knowledge of the interaction mechanism of DTPINa with common sulfides might contribute to the basic understanding of sulfide flotation chemistry (37).

CONCLUSIONS

According to the mineralogical studies, the representative ore sample contains primarily native gold, native silver, electrum, and argentojarosite as gold and silver minerals; cerusite, anglesite, galena, pyromorphite, mimetite, and plumbojarosite as lead minerals; smithsonite, hydrozincite, hemimorphite, adamite, and sphalerite as zinc minerals; limonite, hematite, goethite, pyrite, magnetite, and siderite as iron minerals, and quartz, feldspar, albite, and muscovite as gangue minerals.

A concentrate assaying 235 ppm Au, 3740 ppm Ag and 50.6% Pb was produced as a result of 7 stages flotation experiments performed with ATP+KAX collector combination below 38 μm particle sizes. The optimized conditions were 5000 g/t Na_2S , 1000 g/t Na_2SiO_3 , 600 g/t KAX and 600 g/t ATP.

A concentrate containing 920 ppm Au, 10100 ppm Ag, and 11.38% Pb was produced as a result of 7 stages of flotation experiments performed with Aerophine 3418A + Aero 208 collector combination below 38 μm particle sizes. The optimized conditions were 1000 g/t Na_2SiO_3 , 350 g/t Aerophine 3418A + 350 g/t Aero 208.

In the case of ATP+KAX combination, Pb floated more efficiently compared to Aerophine 3418A + Aero

208 combination. This finding reveals the chelating power of ATP on oxidized Pb minerals. This study proves that the flotation of oxidized minerals could be achieved with chelating collectors which have a strong affinity for metal cations of the mineral surface as reported by Somasundaran and Nagaraj (20) and Marabani, et al. (22). ATP is also seen to be effective on gold and silver minerals where an ATP + KAX combination is used as a collector.

Gold is found in the form of native and electrum in the ore while silver is generally seen as argentojarosite though a minor amount of native silver is observed. The reason for the gold recovery being higher than silver is due to the existence of argentojarosite (38).

REFERENCES

- Allan, G.C.; Woodcock, J.T. (2001) A review of the flotation of native gold and electrum. *Minerals Engineering*, 14 (9): 931–962.
- Hendriks, D.W.; Chevalier, G. (2004) Recovery of gold using gravity concentration the Hemlo experience, website of www.knelson.com
- Laplante, A.R. (2001) Report on the characterization of gravity recoverable gold in a sample of Kemess 1 Ore, Technical Report, McGill University, January.
- Meza, L.A.; Hartmann, W.; Escobar, C. (2004). Recovery of placer gold using the Knelson Concentrator website of www.knelson.com
- Wotruba, H.; Müller, W. (2001) Dichtesortierung von primären Gold-erzen als Alternative zur Laugung, Sortieren Innovationen und Anwendungen, Vortraege zum 2. Kolloquium Sortieren, 11. und 12. Oktober, Berlin, 169–176.
- Curreli, L.; Ghiani, M.; Surracco, M.; Orru, G. (2005) Beneficiation of gold bearing enargite ore by floatation and As leaching with Na-Hypochlorite. *Minerals Engineering*, 18: 849–854.
- Forrest, K.; Yan, D.; Dune, R. (2001) Optimization of gold recovery by selective gold floatation for copper-gold-pyrite ores. *Minerals Engineering*, 14 (2): 227–241.
- Hilson, G.; Monhemius, A.J. (2006). Alternatives to cyanide in the gold mining industry: what prospects for the future?. *Journal of Cleaner Production*, 14: 1158–1167.
- Yan, D.S.; Hariyasa (1997) Selective floatation of pyrite and gold tellurides. *Minerals Engineering*, 10(3): 327–337.
- Bulatovic, S.M. (1997) Flotation behaviour of gold during processing of porphyry copper-gold ores and refractory gold-bearing sulphides. *Minerals Engineering*, 10 (9): 895–908.
- Bulatovic, S.M. (2007) *Handbook of Flotation Reagents: Chemistry, Theory and Practice, Flotation of Sulfide Ores*; Elsevier, Volume 1, 323–366.
- Bulatovic, S.; Wyslouzil, D.M. (2007) *Encyclopedia of Separation Science*; Elsevier Academic Press, 2965–2975.

13. Monte, M.B.M.; Lins, F.F.; Oliveira, J.F. (1997) Selective flotation of gold from pyrite under oxidizing conditions. *International Journal of Mineral Processing*, 51: 255–267.
14. Chrysoulis, S.L.; Dimov, S.S. (2004). Optimized conditions for selective gold flotation by ToF-SIMS and ToF-LIMS. *Applied Surface Science*, 231–232: 265–268.
15. Teague, A.J.; Van Deventer, J.S.J.; Swaminathan, C. (1999) The effect of copper activation on the behaviour of free and refractory gold during froth flotation. *International Journal of Mineral Processing*, 57: 243–263.
16. Teague, A.J.; Van Deventer, J.S.J.; Swaminathan, C. (2000) The effect of copper activation on the behaviour of free and refractory gold during froth flotation. *International Journal of Mineral Processing*, 59: 113–130.
17. Valderrama, L.; Rubia, J. (1998) High intensity conditioning and carrier flotation of gold fine particles. *International Journal of Mineral Processing*, 52: 273–285.
18. Valderrama, L.; Rubia, J. (2008) Unconventional column flotation of low-grade gold fine particles from tailings. *International Journal of Mineral Processing*, 80: 75–84.
19. Sen, S.; Seyrekaya, A.; Cilingir, Y. (2005) Coal-Oil assisted flotation for the gold recovery. *Minerals Engineering*, 18: 1086–1092.
20. Somasundaran, P.; Nagaraj, D.R. (1984) Chemistry and applications of chelating agents in flotation and flocculation, reagents in minerals industry. The Institution of Mining and Metallurgy. M.J. Jones and R. Oblatt, (Eds.) 209–219.
21. Marabini, A.M.; Alesse, V.; Garbassi, F. (1984) Role of sodium sulphide, xanthate and amine in flotation of lead-zinc oxidized ores, reagents in minerals industry. The Institution of Mining and Metallurgy. M.J. Jones and R. Oblatt, (Eds.) 125–136.
22. Marabini, A.M.; Ciriachi, M.; Plescia, P.; Barbaro, M. (2007) Chelating reagents for flotation. *Minerals Engineering*, 20: 1014–1025.
23. Barbaro, M.; Herrera Urbina, R.; Cozza, C.; Fuerstenau, D.; Marabini, A. (1997) Flotation of oxidized minerals of copper using a new synthetic chelating reagent as collector. *International Journal of Mineral Processing*, 50: 275–287.
24. Fuerstenau, D.W.; Herrera-Urbina, R.; McGlashan, D.W. (2000) Studies on the applicability of chelating agents as universal collectors for copper minerals. *International Journal of Mineral Processing*, 58: 15–33.
25. Önal, G.; Güll, A.; Bulut, G.; Perek, K.T.; Kangal, O.; Arslan, F. (2005) A novel process to recover oxide lead-zinc ores, International Seminar on Mineral Processing Technology, MPT-2005, January 6–8, India, 3–10.
26. Önal, G.; Bulut, G.; Güll, A.; Kangal, O.; Perek, K.T.; Arslan, F. (2005) Flotation of Aladağ lead-zinc ores. *Minerals Engineering*, 18: 279–282.
27. Hosseini, S.H.; Forssberg, E. (2006) Smithsonite flotation using potassium amyl xanthate and hexylmercaptan. *Mineral Processing and Extractive Metallurgy, Trans. Ins. Min. Metals C*, 115 (3): 1007–112.
28. Acarkan, N.; Bulut, G.; Güll, A.; Kangal, O.; Karakaş, F. (2008) Au-Ag recovery from complex Pb-Zn Ores, 21st World Mining Congress & Expo 2008, 7–12 September, Poland, Krakow, 1–9.
29. Acarkan, N.; Kangal, O.; Bulut, G.; Önal, G. (2009) The comparison of gravity separation and flotation of gold and silver bearing ore. Conference in Minerals Engineering, 3–4 February, Lulea, Sweden, 3–13.
30. Crozier, R.D. (1992) *Flotation: Theory, Reagents and Ore Testing*; Pergamon Press, 343 pages
31. Yekeler, M.; Yekeler, H. (2006) A density functional study on the efficiencies of 2-mercaptopbenzoxazole and its derivatives as chelating agents in flotation processes Colloids and Surfaces A: Physicochemical and Engineering Aspects, 286, 1–3, 1 September: 121–125.
32. Zhu, Y.; Sun, C.; Wu, W. (2007) A new synthetic chelating collector for the flotation of oxidized-lead mineral Journal of University of Science and Technology Beijing Mineral, Metallurgy, Material, 14, 1, February: 9–13.
33. Gorken, A.; Nagaraj, D.R.; Riccio, P. (1992) The role of pulp redox potential and modifiers in complex sulfide flotation with DTPI In: Woods, R., Richardson, R. (Eds.), ECS Symposium St Louis, LA (Proc. Int. Symp. Electrochemical Miner. Met. Process., III). Electrochemical Society, Pennington, NJ, PV, 92–117.
34. Uribe-Salas, A.; Martinez-Cavazos, T.E.; Nava-Alonso, F.C.; Mendez-Nonell, J.; Lara-Valenzuela, C. (2000) Metallurgical improvement of a lead/copper flotation stage by pulp potential control. *International Journal of Mineral Processing*, 59: 69–83.
35. Basilio, C.; Yoon, R.H. (1992) Mechanism of TCB adsorption on copper and chalcocite, In: Woods, R., Richardson, P.E. (Eds.), Electrochemistry in Mineral and Metal Processing III. The Electrochemical Society, Pennington, N. J., 79–94.
36. Lee, K.; Archibald, D.; McLean, J.; Reuter, M.A. (2009) Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. *Minerals Engineering*, 22, 4, March: 395–401.
37. Pecina, E.T.; Uribe, A.; Finch, J.A.; Nava, F. (2006) Mechanism of di-isobutyl dithiophosphinate adsorption onto galena and pyrite. *Minerals Engineering*, 19: 904–911.
38. Glembotskii, V.A.; Klassen, V.I.; Plaskin, I.N. (1972) *Flotation: Primary Sources*; Rabinovich, H.S. ed.; Translated by R.E. Hammond, New York.